Robust SAR Automatic Target Recognition Via Adversarial Learning
نویسندگان
چکیده
منابع مشابه
Pose Estimation for SAR Automatic Target Recognition
This paper explores statistically pose estimation in SAR ATR. Based on our proposed method of maximizing mutual information, further experiments are conducted by using the new MSTAR/ IU Database. Different pose estimator topologies and training criteria are also employed. Experimental results show that our proposed method reduces the average pose estimation error to within 10 degrees of the tru...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملSAR Target Recognition via Supervised Discriminative Dictionary Learning and Sparse Representation of the SAR-HOG Feature
Automatic target recognition (ATR) in synthetic aperture radar (SAR) images plays an important role in both national defense and civil applications. Although many methods have been proposed, SAR ATR is still very challenging due to the complex application environment. Feature extraction and classification are key points in SAR ATR. In this paper, we first design a novel feature, which is a hist...
متن کاملAccurate and Robust Automatic Target Recognition Method for SAR Imagery with SOM-Based Classification
Microwave imaging techniques, in particular synthetic aperture radar (SAR), are able to obtain useful images even in adverse weather or darkness, which makes them suitable for target position or feature estimation. However, typical SAR imagery is not informative for the operator, because it is synthesized using complex radio signals with greater than 1.0 m wavelength. To deal with the target id...
متن کاملKernel generalized neighbor discriminant embedding for SAR automatic target recognition
In this paper, we propose a new supervised feature extraction algorithm in synthetic aperture radar automatic target recognition (SAR ATR), called generalized neighbor discriminant embedding (GNDE). Based on manifold learning, GNDE integrates class and neighborhood information to enhance discriminative power of extracted feature. Besides, the kernelized counterpart of this algorithm is also pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
سال: 2021
ISSN: 1939-1404,2151-1535
DOI: 10.1109/jstars.2020.3039235